
10/26/23, 2:10 PM A/B testing: A step-by-step guide in Python | by Renato Fillinich | Towards Data Science

https://towardsdatascience.com/ab-testing-with-python-e5964dd66143 1/19

Member-only story

A/B testing: A step-by-step guide in
Python
From experimental design to hypothesis testing

Renato Fillinich · Follow

Published in Towards Data Science · 9 min read · May 28, 2020

1K 18

Image by author

In this article we’ll go over the process of analysing an A/B experiment, from
formulating a hypothesis, testing it, and finally interpreting results. For our
data, we’ll use a dataset from Kaggle which contains the results of an A/B test
on what seems to be 2 different designs of a website page (old_page vs.

https://medium.com/@RenatoFillinich?source=post_page-----e5964dd66143--------------------------------
https://towardsdatascience.com/?source=post_page-----e5964dd66143--------------------------------
https://medium.com/@RenatoFillinich?source=post_page-----e5964dd66143--------------------------------
https://towardsdatascience.com/?source=post_page-----e5964dd66143--------------------------------
https://www.kaggle.com/zhangluyuan/ab-testing?select=ab_data.csv

10/26/23, 2:10 PM A/B testing: A step-by-step guide in Python | by Renato Fillinich | Towards Data Science

https://towardsdatascience.com/ab-testing-with-python-e5964dd66143 2/19

new_page). If you want to follow along with the code I used, feel free to
download the jupyter notebook at my GitHub page.

Here’s what we’ll do:

1. Designing our experiment

2. Collecting and preparing the data

3. Visualising the results

4. Testing the hypothesis

5. Drawing conclusions

To make it a bit more realistic, here’s a potential scenario for our study:

Let’s imagine you work on the product team at a medium-sized online e-
commerce business. The UX designer worked really hard on a new version of
the product page, with the hope that it will lead to a higher conversion rate.
The product manager (PM) told you that the current conversion rate is about
13% on average throughout the year, and that the team would be happy with
an increase of 2%, meaning that the new design will be considered a success if
it raises the conversion rate to 15%.

Before rolling out the change, the team would be more comfortable testing it
on a small number of users to see how it performs, so you suggest running
an A/B test on a subset of your user base users.

1. Designing our experiment

Open in app

Search Write

https://github.com/renatofillinich/ab_test_guide_in_python
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2Fe5964dd66143&%7Efeature=LiOpenInAppButton&%7Echannel=ShowPostUnderCollection&source=---two_column_layout_nav----------------------------------
https://medium.com/?source=---two_column_layout_nav----------------------------------
https://medium.com/new-story?source=---two_column_layout_nav----------------------------------
https://medium.com/me/notifications?source=---two_column_layout_nav----------------------------------

10/26/23, 2:10 PM A/B testing: A step-by-step guide in Python | by Renato Fillinich | Towards Data Science

https://towardsdatascience.com/ab-testing-with-python-e5964dd66143 3/19

Formulating a hypothesis

First things first, we want to make sure we formulate a hypothesis at the start
of our project. This will make sure our interpretation of the results is correct
as well as rigorous.

Given we don’t know if the new design will perform better or worse (or the
same?) as our current design, we’ll choose a two-tailed test:

Hₒ: p = pₒ

Hₐ: p ≠ pₒ

where p and pₒ stand for the conversion rate of the new and old design,
respectively. We’ll also set a confidence level of 95%:

α = 0.05

The α value is a threshold we set, by which we say “if the probability of
observing a result as extreme or more (p-value) is lower than α, then we
reject the Null hypothesis”. Since our α=0.05 (indicating 5% probability), our
confidence (1 — α) is 95%.

Don’t worry if you are not familiar with the above, all this really means is
that whatever conversion rate we observe for our new design in our test, we
want to be 95% confident it is statistically different from the conversion rate
of our old design, before we decide to reject the Null hypothesis Hₒ.

Choosing the variables

For our test we’ll need two groups:

https://en.wikipedia.org/wiki/One-_and_two-tailed_tests

10/26/23, 2:10 PM A/B testing: A step-by-step guide in Python | by Renato Fillinich | Towards Data Science

https://towardsdatascience.com/ab-testing-with-python-e5964dd66143 4/19

A control group - They'll be shown the old design

A treatment (or experimental) group - They'll be shown the new design

This will be our Independent Variable. The reason we have two groups even
though we know the baseline conversion rate is that we want to control for
other variables that could have an effect on our results, such as seasonality:
by having a control group we can directly compare their results to the
treatment group, because the only systematic difference between the groups
is the design of the product page, and we can therefore attribute any
differences in results to the designs.

For our Dependent Variable (i.e. what we are trying to measure), we are
interested in capturing the conversion rate . A way we can code this is by
each user session with a binary variable:

0 - The user did not buy the product during this user session

1 - The user bought the product during this user session

This way, we can easily calculate the mean for each group to get the
conversion rate of each design.

Choosing a sample size

It is important to note that since we won’t test the whole user base (our
population), the conversion rates that we’ll get will inevitably be only
estimates of the true rates.

The number of people (or user sessions) we decide to capture in each group
will have an effect on the precision of our estimated conversion rates: the
larger the sample size, the more precise our estimates (i.e. the smaller our

https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/3-populations-and-samples

10/26/23, 2:10 PM A/B testing: A step-by-step guide in Python | by Renato Fillinich | Towards Data Science

https://towardsdatascience.com/ab-testing-with-python-e5964dd66143 5/19

confidence intervals), the higher the chance to detect a difference in the two
groups, if present.

On the other hand, the larger our sample gets, the more expensive (and
impractical) our study becomes.

So how many people should we have in each group?

The sample size we need is estimated through something called Power
analysis, and it depends on a few factors:

Power of the test (1 — β) — This represents the probability of finding a
statistical difference between the groups in our test when a difference is
actually present. This is usually set at 0.8 by convention (here’s more info
on statistical power, if you are curious)

Alpha value (α) — The critical value we set earlier to 0.05

Effect size — How big of a difference we expect there to be between the
conversion rates

Since our team would be happy with a difference of 2%, we can use 13% and
15% to calculate the effect size we expect.

Luckily, Python takes care of all these calculations for us:

Packages imports
import numpy as np
import pandas as pd
import scipy.stats as stats
import statsmodels.stats.api as sms
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns

https://research.usu.edu//irb/wp-content/uploads/sites/12/2015/08/A_Researchers_Guide_to_Power_Analysis_USU.pdf
https://research.usu.edu//irb/wp-content/uploads/sites/12/2015/08/A_Researchers_Guide_to_Power_Analysis_USU.pdf
https://en.wikipedia.org/wiki/Power_of_a_test

10/26/23, 2:10 PM A/B testing: A step-by-step guide in Python | by Renato Fillinich | Towards Data Science

https://towardsdatascience.com/ab-testing-with-python-e5964dd66143 6/19

from math import ceil

%matplotlib inline

Some plot styling preferences
plt.style.use('seaborn-whitegrid')
font = {'family' : 'Helvetica',
 'weight' : 'bold',
 'size' : 14}

mpl.rc('font', **font)

effect_size = sms.proportion_effectsize(0.13, 0.15) # Calculating
effect size based on our expected rates

required_n = sms.NormalIndPower().solve_power(
 effect_size,
 power=0.8,
 alpha=0.05,
 ratio=1
) # Calculating
sample size needed

required_n = ceil(required_n) # Rounding up
to next whole number

print(required_n)

4720

We’d need at least 4720 observations for each group.

Having set the power parameter to 0.8 in practice means that if there exists
an actual difference in conversion rate between our designs, assuming the
difference is the one we estimated (13% vs. 15%), we have about 80% chance
to detect it as statistically significant in our test with the sample size we
calculated.

10/26/23, 2:10 PM A/B testing: A step-by-step guide in Python | by Renato Fillinich | Towards Data Science

https://towardsdatascience.com/ab-testing-with-python-e5964dd66143 7/19

2. Collecting and preparing the data

Great stuff! So now that we have our required sample size, we need to collect
the data. Usually at this point you would work with your team to set up the
experiment, likely with the help of the Engineering team, and make sure
that you collect enough data based on the sample size needed.

However, since we’ll use a dataset that we found online, in order to simulate
this situation we’ll:

1. Download the dataset from Kaggle

2. Read the data into a pandas DataFrame

3. Check and clean the data as needed

4. Randomly sample n=4720 rows from the DataFrame for each group *

*Note: Normally, we would not need to perform step 4, this is just for the
sake of the exercise

Since I already downloaded the dataset, I’ll go straight to number 2.

df = pd.read_csv('ab_data.csv')

df.head()

https://www.kaggle.com/zhangluyuan/ab-testing?select=ab_data.csv

10/26/23, 2:10 PM A/B testing: A step-by-step guide in Python | by Renato Fillinich | Towards Data Science

https://towardsdatascience.com/ab-testing-with-python-e5964dd66143 8/19

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 294478 entries, 0 to 294477
Data columns (total 5 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 user_id 294478 non-null int64
 1 timestamp 294478 non-null object
 2 group 294478 non-null object
 3 landing_page 294478 non-null object
 4 converted 294478 non-null int64
dtypes: int64(2), object(3)
memory usage: 11.2+ MB

To make sure all the control group are seeing the old page and
viceversa

pd.crosstab(df['group'], df['landing_page'])

There are 294478 rows in the DataFrame, each representing a user session,
as well as 5 columns :

user_id - The user ID of each session

timestamp - Timestamp for the session

group - Which group the user was assigned to for that session { control ,
treatment }

landing_page - Which design each user saw on that session { old_page ,
new_page }

converted - Whether the session ended in a conversion or not (binary,
0 =not converted, 1 =converted)

10/26/23, 2:10 PM A/B testing: A step-by-step guide in Python | by Renato Fillinich | Towards Data Science

https://towardsdatascience.com/ab-testing-with-python-e5964dd66143 9/19

We’ll actually only use the group and converted columns for the analysis.

Before we go ahead and sample the data to get our subset, let’s make sure
there are no users that have been sampled multiple times.

session_counts = df['user_id'].value_counts(ascending=False)
multi_users = session_counts[session_counts > 1].count()

print(f'There are {multi_users} users that appear multiple times in
the dataset')

There are 3894 users that appear multiple times in the dataset

There are, in fact, 3894 users that appear more than once. Since the number
is pretty low, we’ll go ahead and remove them from the DataFrame to avoid
sampling the same users twice.

users_to_drop = session_counts[session_counts > 1].index

df = df[~df['user_id'].isin(users_to_drop)]
print(f'The updated dataset now has {df.shape[0]} entries')

The updated dataset now has 286690 entries

Sampling

Now that our DataFrame is nice and clean, we can proceed and sample
n=4720 entries for each of the groups. We can use pandas' DataFrame.sample()
method to do this, which will perform Simple Random Sampling for us.

10/26/23, 2:10 PM A/B testing: A step-by-step guide in Python | by Renato Fillinich | Towards Data Science

https://towardsdatascience.com/ab-testing-with-python-e5964dd66143 10/19

Note: I’ve set random_state=22 so that the results are reproducible if you feel
like following on your own Notebook: just use random_state=22 in your
function and you should get the same sample as I did.

control_sample = df[df['group'] == 'control'].sample(n=required_n,
random_state=22)
treatment_sample = df[df['group'] ==
'treatment'].sample(n=required_n, random_state=22)

ab_test = pd.concat([control_sample, treatment_sample], axis=0)
ab_test.reset_index(drop=True, inplace=True)

ab_test

ab_test.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 9440 entries, 0 to 9439

Data columns (total 5 columns):

Column Non-Null Count Dtype

10/26/23, 2:10 PM A/B testing: A step-by-step guide in Python | by Renato Fillinich | Towards Data Science

https://towardsdatascience.com/ab-testing-with-python-e5964dd66143 11/19

--- ------ -------------- -----

0 user_id 9440 non-null int64

1 timestamp 9440 non-null object

2 group 9440 non-null object

3 landing_page 9440 non-null object

4 converted 9440 non-null int64

dtypes: int64(2), object(3)

memory usage: 368.9+ KB

ab_test['group'].value_counts()

control 4720

treatment 4720

Name: group, dtype: int64

Great, looks like everything went as planned, and we are now ready to
analyse our results.

3. Visualising the results

The first thing we can do is to calculate some basic statistics to get an idea of
what our samples look like.

conversion_rates = ab_test.groupby('group')['converted']

std_p = lambda x: np.std(x, ddof=0) # Std. deviation of
the proportion
se_p = lambda x: stats.sem(x, ddof=0) # Std. error of the

10/26/23, 2:10 PM A/B testing: A step-by-step guide in Python | by Renato Fillinich | Towards Data Science

https://towardsdatascience.com/ab-testing-with-python-e5964dd66143 12/19

proportion (std / sqrt(n))

conversion_rates = conversion_rates.agg([np.mean, std_p, se_p])
conversion_rates.columns = ['conversion_rate', 'std_deviation',
'std_error']

conversion_rates.style.format('{:.3f}')

Judging by the stats above, it does look like our two designs performed very
similarly, with our new design performing slightly better, approx. 12.3% vs.
12.6% conversion rate.

Plotting the data will make these results easier to grasp:

plt.figure(figsize=(8,6))

sns.barplot(x=ab_test['group'], y=ab_test['converted'], ci=False)

plt.ylim(0, 0.17)
plt.title('Conversion rate by group', pad=20)
plt.xlabel('Group', labelpad=15)
plt.ylabel('Converted (proportion)', labelpad=15);

10/26/23, 2:10 PM A/B testing: A step-by-step guide in Python | by Renato Fillinich | Towards Data Science

https://towardsdatascience.com/ab-testing-with-python-e5964dd66143 13/19

The conversion rates for our groups are indeed very close. Also note that the
conversion rate of the control group is lower than what we would have
expected given what we knew about our avg. conversion rate (12.3% vs.
13%). This goes to show that there is some variation in results when
sampling from a population.

So… the treatment group's value is higher. Is this difference statistically
significant?

4. Testing the hypothesis

The last step of our analysis is testing our hypothesis. Since we have a very
large sample, we can use the normal approximation for calculating our p-
value (i.e. z-test).

Again, Python makes all the calculations very easy. We can use the
statsmodels.stats.proportion module to get the p-value and confidence
intervals:

from statsmodels.stats.proportion import proportions_ztest,
proportion_confint

https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Normal_approximation_interval

10/26/23, 2:10 PM A/B testing: A step-by-step guide in Python | by Renato Fillinich | Towards Data Science

https://towardsdatascience.com/ab-testing-with-python-e5964dd66143 14/19

control_results = ab_test[ab_test['group'] == 'control']['converted']
treatment_results = ab_test[ab_test['group'] == 'treatment']
['converted']

n_con = control_results.count()
n_treat = treatment_results.count()
successes = [control_results.sum(), treatment_results.sum()]
nobs = [n_con, n_treat]

z_stat, pval = proportions_ztest(successes, nobs=nobs)
(lower_con, lower_treat), (upper_con, upper_treat) =
proportion_confint(successes, nobs=nobs, alpha=0.05)

print(f'z statistic: {z_stat:.2f}')
print(f'p-value: {pval:.3f}')
print(f'ci 95% for control group: [{lower_con:.3f},
{upper_con:.3f}]')
print(f'ci 95% for treatment group: [{lower_treat:.3f},
{upper_treat:.3f}]')

z statistic: -0.34

p-value: 0.732

ci 95% for control group: [0.114, 0.133]

ci 95% for treatment group: [0.116, 0.135]

5. Drawing conclusions

Since our p-value=0.732 is way above our α=0.05 threshold, we cannot reject
the Null hypothesis Hₒ, which means that our new design did not perform
significantly different (let alone better) than our old one :(

Additionally, if we look at the confidence interval for the treatment group
([0.116, 0.135], or 11.6-13.5%) we notice that:

1. It includes our baseline value of 13% conversion rate

10/26/23, 2:10 PM A/B testing: A step-by-step guide in Python | by Renato Fillinich | Towards Data Science

https://towardsdatascience.com/ab-testing-with-python-e5964dd66143 15/19

2. It does not include our target value of 15% (the 2% uplift we were aiming
for)

What this means is that it is more likely that the true conversion rate of the
new design is similar to our baseline, rather than the 15% target we had
hoped for. This is further proof that our new design is not likely to be an
improvement on our old design, and that unfortunately we are back to the
drawing board!

Did you like my story? Please let me know!

And please feel free to download the jupyter notebook at my GitHub page.

Written by Renato Fillinich
314 Followers · Writer for Towards Data Science

UX Researcher @ Google, Data science and math enthusiast

Follow

User Research Ab Testing UX Python Hypothesis Testing

https://github.com/renatofillinich/ab_test_guide_in_python
https://medium.com/tag/user-research?source=post_page-----e5964dd66143---------------user_research-----------------
https://medium.com/tag/ab-testing?source=post_page-----e5964dd66143---------------ab_testing-----------------
https://medium.com/tag/ux?source=post_page-----e5964dd66143---------------ux-----------------
https://medium.com/tag/python?source=post_page-----e5964dd66143---------------python-----------------
https://medium.com/tag/hypothesis-testing?source=post_page-----e5964dd66143---------------hypothesis_testing-----------------
https://medium.com/@RenatoFillinich?source=post_page-----e5964dd66143--------------------------------
https://towardsdatascience.com/?source=post_page-----e5964dd66143--------------------------------
https://medium.com/@RenatoFillinich?source=post_page-----e5964dd66143--------------------------------
https://medium.com/@RenatoFillinich/followers?source=post_page-----e5964dd66143--------------------------------
https://towardsdatascience.com/?source=post_page-----e5964dd66143--------------------------------

