ORIE 5355 Lecture 9: Algorithmic pricing: capacity, price differentiation, and competition

Nikhil Garg

Announcements

- HW2 due tomorrow
- Quiz 2 released due Friday evening
- HW 3 released due Tuesday 10/18
 - Conceptual component of HW due by class time on 10/05

Last time

- Given a demand distribution d(p) = 1 F(p), how to calculate optimal prices $\arg \max_{p} [p \times d(p)]$
- How to estimate demand distributions, potentially as a function of covariates

More on demand estimation

- We want to estimate $d(p, x) \stackrel{\text{\tiny def}}{=} 1 F_{p|X}(p \mid X = x)$
- Last time: Logistic regression
 - Target (Y variable) is purchase decision d(p, x)
 - Covariates (p, x) are: price offered, user covariates, interactions between price and covariates or between covariates
- Challenge: what if you have many items you're selling (separately)? This wastes information (can't use models across items)
- Alternative: Use idea from recommendations! Suppose you have user vector u_i and item vector w_j . Then, ML model to learn with covariates: $(p, u_i \cdot w_j)$
 - Can learn demand for items you haven't sold before at certain prices!
 - (Or completely new items, using KNN approach from recommendations)
 - Allows incorporating other information you have about items, that helped you learn the item vectors

Plan for today

Many assumptions last time:

- No capacity constraints
- No competition from other sellers
- Only one item
- Allowed to explicitly give different prices to different users
- No over-time dynamics

We'll peel back some of these assumptions today

Capacity constraints and pricing over time

Setting and examples

You often are trying to sell limited quantities of a good, to many potential customers over time

- Airline tickets the airline "wastes" a seat that's unsold
 - Same for concerts, sports, any event with a fixed date
 - Clothes that are going out of season/fashion
 - Electronics that become obsolete over time
- Any retail setting with inventory constraints
- Often 2 competing effects:
 - The items become less valuable over time, or you have a deadline to sell them
 - You have less stock over time

Simplified example

- You have 1 copy of the item to sell
- There are 2 time periods, today and tomorrow
 - One customer will come in today, a different one tomorrow
- No covariates
- No "discounting" (a dollar tomorrow is as valuable as a dollar today)
- You already have a good estimate of d(p)

What price p_1 do you set today? What price p_2 do you set tomorrow?

A couple of observations

What I do today depends on what I can/will do tomorrow.

- I can't set p_1 unless I know how I will set p_2 in *each scenario*. (whether I sold the item today, or whether I didn't).
- I have to "simulate" the future

If I don't sell the item today, then *tomorrow* I am solving the same problem that we solved in class last time:

- Maximizing revenue for a single buyer/without capacity considerations
- => The price for tomorrow will be same as simple revenue maximizing price

 $p_2 = \arg \max_p [p \times d(p)]$

Not true for the price today:

- If I sell the item today, then I lose out on a potential sale tomorrow
- If I don't sell the item today, I get another chance tomorrow
- => I should "take a risk" today to try to sell at a higher price

Solving the example: "Bellman equation"

- If I don't sell today: (happens with probability $1 d(p_1)$)
 - Then my revenue today is 0
 - Then the expected revenue tomorrow is: $p_2d(p_2)$
- If I do sell today: (happens with probability d(p₁))
 - My revenue today is p₁
 - Then the expected revenue tomorrow is 0
- So, my overall expected revenue is:

 $d(p_1)(p_1 + 0) + (1 - d(p_1))(0 + p_2d(p_2))$

- p₂ easy to solve does not depend on p₁
- Given p₂, the above revenue function is only a function of p₁ => Can optimize p₁

- You can generalize this idea to selling any number of items sequentially for T days
- Start from Day T: If you still have an item, do single-shot maximization
- Day T 1: Given Day T price, you know expected reward if you still have an item to be sold after Day T 1. And so, you can calculate optimal price for Day T 1.
- Now, you have the expected reward if you still have an item to be sold after Day $T-2\ldots$

More Bellman equation

TT

• Let V_t denote: "Expected profit if I still have an item to sell on day t" . . 1()

$$V_{T} = p_{T} \times d(p_{T})$$
$$V_{T-1} = [p_{T-1} \times d(p_{T-1})] + (1 - d(p_{T-1}))V_{T}$$

- Above means: "Value today is revenue today if I sell the item today, or tomorrow's expected revenue if I don't sell the item today"
- For each t, given V_{t+1} we can calculate optimal price p_t
- Keep iterating until you have prices $p_0 \dots p_T$
- Resulting V_0 is my expected revenue given these prices

Bellman equations: a general idea

- Constructing a tree to reason about what happens tomorrow, and then iterating backwards, is a powerful + flexible algorithmic technique: "dynamic programming"
- Example: What if you have 5 copies of each item? Let k denote how many copies of the item I have. Then:

$$V_{t,0} = 0 \text{ for all } t$$
$$V_{t,k} = \max_{p_{t,k}} d(p_{t,k}) [p_{t,k} + V_{t+1,k-1}] + (1 - d(p_{t,k})) V_{t+1,k}$$

If I sell an item today: Revenue today, plus future revenue from 1 less item If I don't sell: Future revenue from same number of items

Competing effects: Now, less capacity over time \rightarrow prices should go up (but less time to sell, so prices should go down).

Capacity constraints + over-time pricing in practice

- Dynamic programs/bellman equations are powerful, but often the real world is too complicated
 - Uncertainty in future capacity
 - Future actions of competitors
 - Future demand distributions
 - "Long time horizons" (T is big)
- In theory, dynamic programming can handle the above. In practice, hard to know how to calculate future value.

Approximating dynamic programming

- In the recommendations module, we created "score" (or "index") functions:
 - Consider future users, through capacity and avg ratings terms in the score function
- With 1 item: V_{t+1} represents my "opportunity cost" if I sell an item today that I could have sold tomorrow.

Also interpret as "safety net": if fail to sell the item today, still earn V_{t+1} in expectation

- Instead of doing a full Bellman equation, estimate V_{t+1} through some other means, then plug into the decision problem for today (finding price p_t)
 - Can construct it like we did score functions for recommendations
 - AlphaGo to play Go: V_{t+1} is partially estimated via a neural network

Pricing with capacity summary

- Just like in recommendations, have to think about potential future demand
- Here, potential future demand lets us be "more aggressive" by pricing higher today
- If I can summarize future revenue (V_{t+1}) effectively, then I can optimize today's prices
- Dynamic programming: start from the end!
- We assumed that customers can't strategize on when to come not true!

Questions?