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Announcements

• HW2 due tomorrow

• Quiz 2 released – due Friday evening

• HW 3 released – due Tuesday 10/18
• Conceptual component of HW due by class time on 10/05



Last time

• Given a demand distribution d p = 1 −
𝐹 𝑝 , how to calculate optimal prices

arg max
p

p × d p

• How to estimate demand distributions, 
potentially as a function of covariates



More on demand estimation
• We want to estimate d p, x ≝ 1 − 𝐹𝑝|𝑋 𝑝 𝑋 = 𝑥)

• Last time: Logistic regression
• Target (Y variable) is purchase decision d p, x
• Covariates p, x are: price offered, user covariates, interactions between price and 

covariates or between covariates

• Challenge: what if you have many items you’re selling (separately)? This 
wastes information (can’t use models across items)

• Alternative: Use idea from recommendations! Suppose you have user 
vector ui and item vector wj. Then, ML model to learn with covariates: 
p, 𝑢𝑖 ⋅ 𝑤𝑗
• Can learn demand for items you haven’t sold before at certain prices!
• (Or completely new items, using KNN approach from recommendations)
• Allows incorporating other information you have about items, that helped you learn 

the item vectors



Plan for today

Many assumptions last time:
• No capacity constraints

• No competition from other sellers

• Only one item

• Allowed to explicitly give different prices to different users

• No over-time dynamics

We’ll peel back some of these assumptions today



Capacity constraints and pricing 
over time



Setting and examples

You often are trying to sell limited quantities of a good, to many 
potential customers over time

• Airline tickets – the airline “wastes” a seat that’s unsold
• Same for concerts, sports, any event with a fixed date
• Clothes that are going out of season/fashion
• Electronics that become obsolete over time

• Any retail setting with inventory constraints

• Often 2 competing effects:
• The items become less valuable over time, or you have a deadline to sell them
• You have less stock over time



Simplified example

• You have 1 copy of the item to sell

• There are 2 time periods, today and tomorrow
• One customer will come in today, a different one tomorrow

• No covariates

• No “discounting” (a dollar tomorrow is as valuable as a dollar today)

• You already have a good estimate of d p

What price p1 do you set today? What price p2 do you set tomorrow?



A couple of observations

What I do today depends on what I can/will do tomorrow.

• I can’t set p1 unless I know how I will set p2 in each scenario. (whether I sold the item 
today, or whether I didn’t). 

• I have to “simulate” the future 

If I don’t sell the item today, then tomorrow I am solving the same problem that we solved 
in class last time:

• Maximizing revenue for a single buyer/without capacity considerations
• => The price for tomorrow will be  same as simple revenue maximizing price

p2 = arg max
p

p × d p

Not true for the price today:
• If I sell the item today, then I lose out on a potential sale tomorrow
• If I don’t sell the item today, I get another chance tomorrow
=> I should “take a risk” today to try to sell at a higher price



Solving the example: “Bellman equation”

• If I don’t sell today: (happens with probability 1 − d p1 )
• Then my revenue today is 0
• Then the expected revenue tomorrow is: p2d p2

• If I do sell today: (happens with probability d p1 )
• My revenue today is p1
• Then the expected revenue tomorrow is 0

• So, my overall expected revenue is:

d p1 p1 + 0 + 1 − d p1 0 + p2d p2
• p2 easy to solve – does not depend on p1
• Given p2, the above revenue function is only a 

function of p1 => Can optimize p1





Bellman equation generally

• You can generalize this idea to selling any number of items 
sequentially for T days

• Start from Day T: If you still have an item, do single-shot maximization

• Day T − 1: Given Day T price, you know expected reward if you still 
have an item to be sold after Day T − 1. And so, you can calculate 
optimal price for Day T − 1. 

• Now, you have the expected reward if you still have an item to be sold 
after Day T − 2…





More Bellman equation

• Let Vt denote: “Expected profit if I still have an item to 
sell on day t”

VT = 𝑝𝑇 × 𝑑 𝑝𝑇
VT−1 = 𝑝𝑇−1 × 𝑑 𝑝𝑇−1 + 1 − 𝑑 𝑝𝑇−1 𝑉𝑇

• Above means: “Value today is revenue today if I sell the 
item today, or tomorrow’s expected revenue if I don’t 
sell the item today” 

• For each t, given 𝑉𝑡+1 we can calculate optimal price 𝑝𝑡
• Keep iterating until you have prices 𝑝0…𝑝𝑇
• Resulting V0 is my expected revenue given these prices





Bellman equations: a general idea

• Constructing a tree to reason about what happens tomorrow, and then 
iterating backwards, is a powerful + flexible algorithmic technique: 
“dynamic programming”

• Example: What if you have 5 copies of each item? 
Let k denote how many copies of the item I have. Then:

Vt,0 = 0 for all t

Vt,k = max
𝑝𝑡,𝑘

𝑑 𝑝𝑡,𝑘 𝑝𝑡,𝑘 + Vt+1,k−1 + 1 − 𝑑 𝑝𝑡,𝑘 Vt+1,k

If I sell an item today: Revenue today, plus future revenue from 1 less item
If I don’t sell: Future revenue from same number of items
Competing effects: Now, less capacity over time → prices should go up (but less time 
to sell, so prices should go down).



Capacity constraints + over-time pricing in 
practice
• Dynamic programs/bellman equations are powerful, but often the 

real world is too complicated
• Uncertainty in future capacity

• Future actions of competitors

• Future demand distributions

• “Long time horizons” (T is big)

• In theory, dynamic programming can handle the above. In practice, 
hard to know how to calculate future value.



Approximating dynamic programming

• In the recommendations module, we created “score”(or “index”) functions:
• Consider future users, through capacity and avg ratings terms in the score function

• With 1 item: Vt+1 represents my “opportunity cost” if I sell an item today 
that I could have sold tomorrow.

Also interpret as “safety net”: if fail to sell the item today, still earn Vt+1 in expectation

• Instead of doing a full Bellman equation, estimate Vt+1through some other 
means, then plug into the decision problem for today (finding price pt)
• Can construct it like we did score functions for recommendations

• AlphaGo to play Go: Vt+1 is partially estimated via a neural network



Pricing with capacity summary

• Just like in recommendations, have to think about potential future 
demand

• Here, potential future demand lets us be “more aggressive” by pricing 
higher today

• If I can summarize future revenue (Vt+1) effectively, then I can 
optimize today’s prices 

• Dynamic programming: start from the end!

• We assumed that customers can’t strategize on when to come – not 
true!



Questions?


