ORIE 5355: People, Data, & Systems

Lecture 8: Introduction to Algorithmic Pricing

Nikhil Garg
Course webpage: https://orie5355.github.io/Fall 2021/



https://orie5355.github.io/Fall_2021/

Announcements

* Homework 2 due next week

* Quiz 2 next week



Questions from
recommendations?



Algorithmic Pricing



Module Overview

* Basics of pricing and algorithmic pricing
* Pricing under uncertainty or heterogeneous valuations in population
 Demand estimation at different prices

* Challenges from practice:

Capacity constraints, dynamics, competition, selling multiple items
(cannibalization)

* Extended case-study: Pricing in online marketplaces [Ride-hailing]
* Ethics, Transparency, and Bias in algorithmic pricing



User model and omniscient
pricing



Simple user behavior model

e Suppose you’re selling 1 type of item

* Each person i has a private valuation v; for that item

* Suppose you offer the item at price p

* Person i buys theitemifv; = p

* Omniscient pricing: maximize revenue by setting p; = v;

I’ll sell you a copy
for pricep =8




Maximizing profit via machine learning

* Omniscient pricing: maximize revenue by setting n; = v;
* Challenge: we don’t know valuation v; for each person

* Ok, let’s just use a machine learning approach!

* Create an estimate 7; for value for person i using historical data
 KNN, regression, whatever

* Set price p; = 7;

* Problem: the above approach miserably fails!



Why does the naive method fail?

* Your estimated valuation 7; is not perfect

* Example: Suppose the true valuation v; = 10
* What is your revenue if U; = p = 97
Answer: 9
 What is your revenue if U; = p = 117
Answer: 0

* Under the simple behavior model, small errors in guessing valuation
U; can have huge revenue implications

* Must incorporate uncertainty in your pricing decisions!

(You also don’t have great data to estimate 7;...)



Optimal pricing with uncertainty

“Posted price mechanisms” and personalized pricing



Challenge

* There is a lot of randomness in whether someone purchases at a
given price. Multiple ways to think about it:

* You have a single price p for the entire population, but people differ in in their
valuations v; (heterogeneity)

* You do personalized pricing p;, but your estimate 7; is not perfect (noise)

* Why is this a problem?
* In recommendations, we ignored noise. Why not ignore it here?

* Here, dealing with noise is crucial if we want to maximize revenue, even “in
expectation”



Model

* Here, let’s suppose we are posting single price p for entire
population

Density f(v)

* We have unlimited copies of the item
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* Suppose we have a distribution F for the users’ valuations:
for each user i, valuation v; ~ F
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* If we set price p:
* Each individual with valuation v; = p purchases
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Personalized pricing: Price differentiation via
covariates

 So far: given the population valuation distribution F, we can find the
price p that maximizes revenue: argmax,, p(l — F(p))

* Now, suppose we have covariates x; for each potential customer, and
we are allowed to give show different prices to different people

* Prices by geography (neighborhood)
* Student or senior citizen discounts
* Now, given.the conditional distributions Fp1x (p| X = x), simply
create a price p(x) that maximizes revenue

p(x) X (1 — Fpx (p| X =x))
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Example cont.

* If we don’t have any capacity constraints =
on the item, we can simply find optimal
prices independently for the two customer £,
types 52

* Value of personalized pricing
* Revenue from single price: 3.81
* Revenue from separate prices: 4.72

* Things get more complicated if there are
capacity constraints (next time)

E— X:]_

e (Combined




Questions?



Demand (distribution) estimation



The challenge

* So far, we've talked about calculating
optimal prices if we knew the demand
distribution F(p), or the conditional
demand distributions F, x (p | X = x)

e We don’t know these distributions!
Need to learn them from data

* What does data look like? We never
see valuations, just purchase decisions
at historical prices p

e Assumption: we see decisions at many
prices

Location Income level Offered price
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Naive approach: Empirical Distribution

* Goal: estimate d(p) = 1 — F(p) for each p in a “reasonable
range” of prices

* Naive approach:
* Bin the historical prices offered

* In each bin, construct estimate d/(a as the fraction of offers in that bin
that were accepted

= # offers accepted

d(p) =

* When estimating I, x (p | X = x), simply do the same thing but
for each set of covariates

# offers



Naive method pros and cons

Pros:

=X
o

—— Num Samples = 100
—— Num Samples = 1000
—— Num Samples = 4000

e Simple to implement

o
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* “Non-parametric” — no assumptions
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* As # of historical samples — o, converge to truth

Estimated demand: 1 — I:'(p)
)
N

Cons: .
* Wastes data: only use data for that given price -
bin and for that given covariate | 1 2 3 2 5 6

* Requires many samples

Exactly the same as naive mean estimation in polling!



Fancier methods: machine learning

* We want to estimate d(p,x) = 1 — F,x (p | X = x)

* In polling module: we replaced mean estimation with “MRP.” More
generally, plug in a machine learning model
* Now, can borrow information across prices and covariates

* We must make a “parametric” assumption for how prices and covariates
relate to purchasing decisions

* One example: Logistic regression

e Target (Y variable) is purchase decision

» Covariates are: price offered, user covariates, interactions between price and
covariates or between covariates



Demand estimation comments

 Demand estimation and forecasting is probably the most important
and difficult challenge in revenue management

* Unlike most machine learning challenges, we need to estimate a
function F (p) [or treat price as a covariate]

* We made a substantial assumption that almost never holds in
practice: that you have historical data at many different prices p

Requires experimentation!



Today’s summary, & complicating factors

Today: We want to sell an item
* Only one item
* No capacity constraints
* No competition from other sellers
* No over-time dynamics
* Allowed to explicitly give different prices to different users

Then: revenue-maximizing price(s) and demand estimation

Next time: Relax (some of) these limiting assumptions



Questions?



