ORIE 5355: People, Data, & Systems Lecture 8: Introduction to Algorithmic Pricing Nikhil Garg Course webpage: <u>https://orie5355.github.io/Fall_2021/</u>

Announcements

- Homework 2 due tomorrow
- Zhi's Office hours today, 7:30PM-8:30PM
- Quiz 2 released this week
- Homework 3 released by Wednesday

Questions from last time?

Algorithmic Pricing

Module Overview

- Basics of pricing and algorithmic pricing
 - Pricing under uncertainty or heterogeneous valuations in population
 - Demand estimation at different prices
- Challenges from practice:

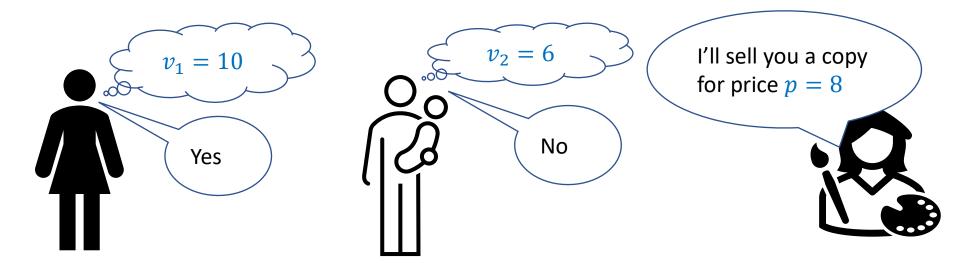
Capacity constraints, dynamics, competition, selling multiple items (cannibalization)

- Extended case-study: Pricing in online marketplaces [Ride-hailing]
- Ethics, Transparency, and Bias in algorithmic pricing

User model and omniscient pricing

Simple user behavior model

- Suppose you're selling 1 type of item
- Each person *i* has a *private valuation* v_i for that item
- Suppose you offer the item at price *p*
- Person *i* buys the item if $v_i \ge p$
- Omniscient pricing: maximize revenue by setting $p_i = v_i$



Maximizing profit via machine learning

- Omniscient pricing: maximize revenue by setting $p_i = v_i$
- Challenge: we don't know valuation v_i for each person
- Ok, let's just use a machine learning approach!
 - Create an estimate \hat{v}_i for value for person i using historical data
 - KNN, regression, whatever
 - Set price $p_i = \widehat{v}_i$
- Problem: the above approach *miserably fails*!

Why does the naïve method fail?

- Your estimated valuation \hat{v}_i is not perfect
- Example: Suppose the true valuation $v_i = 10$
 - What is your revenue if $\hat{v}_i = p = 9$?

Answer: 9

- What is your revenue if $\hat{v}_i = p = 11$? Answer: 0
- Under the simple behavior model, *small errors* in guessing valuation $\hat{v_i}$ can have *huge revenue implications*
- Must incorporate *uncertainty* in your pricing decisions!

Optimal pricing

"Posted price mechanisms" and personalized pricing

Challenge

- There is a lot of randomness or heterogeneity in whether someone purchases at a given price. Multiple ways to think about it:
 - You have a single price p for the entire population, but people differ in their valuations v_i (heterogeneity)
 - You do personalized pricing p_i , but your estimate \hat{v}_i is not perfect (noise)
- Why is this a problem?
 - In recommendations, we ignored noise. Why not ignore it here?
 - Here, dealing with noise is crucial if we want to maximize revenue, even "in expectation"

Model

- Here, let's suppose we are posting single price p for entire population
- We have unlimited copies of the item
- Suppose we have a distribution F for the users' valuations: for each user i, valuation $v_i \sim F$

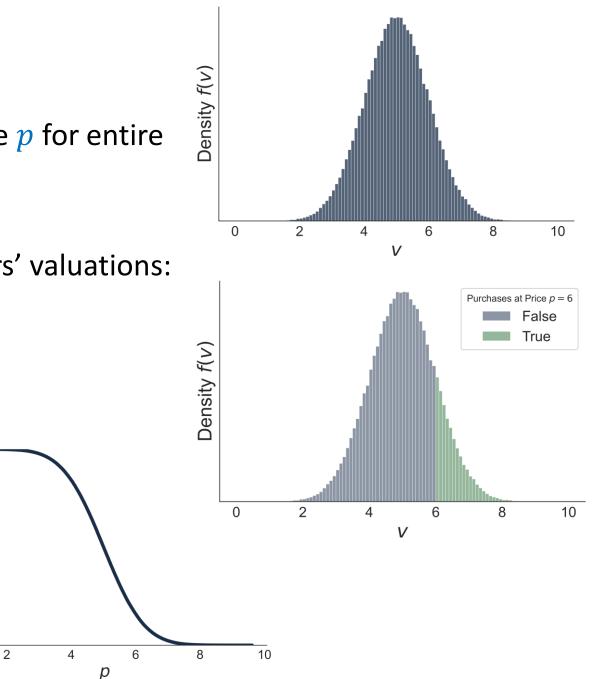
(d) <u>H</u> 1.0

H 0.8

Fraction that purchases:

- If we set price *p*:
 - Each individual with valuation $v_i \ge p$ purchases
 - Overall, fraction 1 F(p) purchases

1 - F(p) is called the "demand" at price p

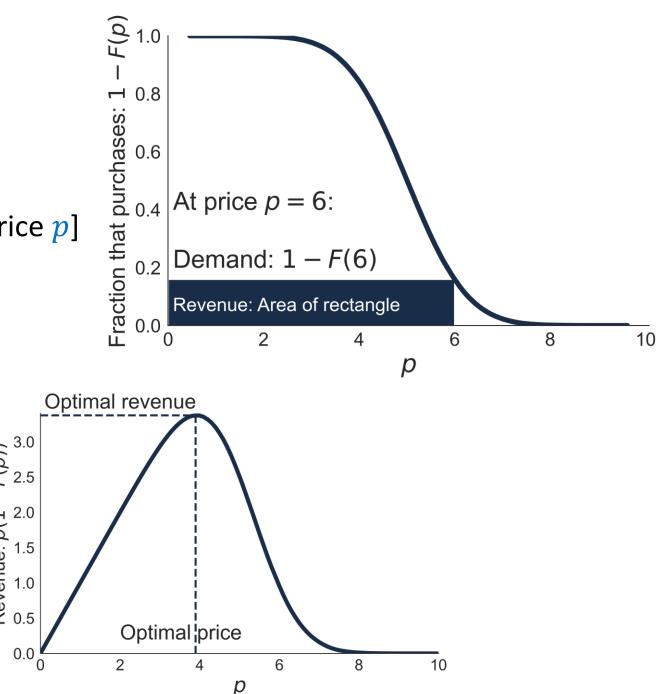


Maximizing revenue

• Expected revenue at price *p*: [Revenue from each sale] x [Demand at price p] p(1 - F(p))

(a) 3.0 (d) 4 2.5

 Revenue maximizing price: $\operatorname{argmax}_{p} p(1 - F(p))$

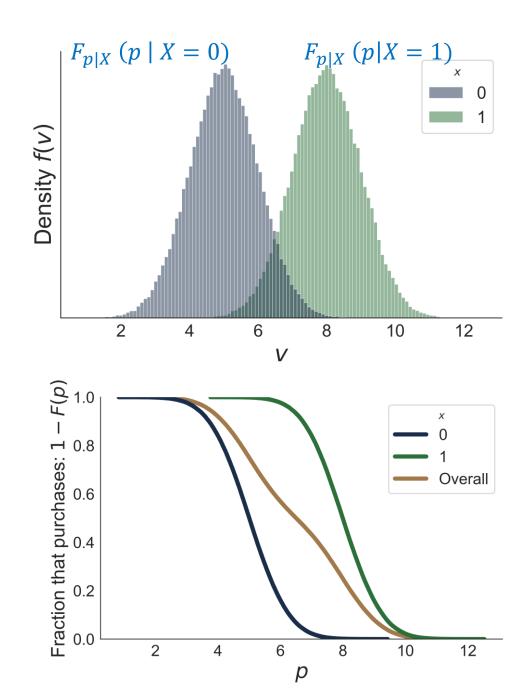


Personalized pricing: Price differentiation via covariates

- So far: given the population valuation distribution F, we can find the price p that maximizes revenue: $\operatorname{argmax}_p p(1 F(p))$
- Now, suppose we have covariates x_i for each potential customer, and we are allowed to give show different prices to different people
 - Prices by geography (neighborhood)
 - Student or senior citizen discounts
- Now, given the conditional distributions $F_{p|X}(p | X = x)$, simply create a price p(x) that maximizes revenue $p(x) \times (1 - F_{p|X}(p | X = x))$

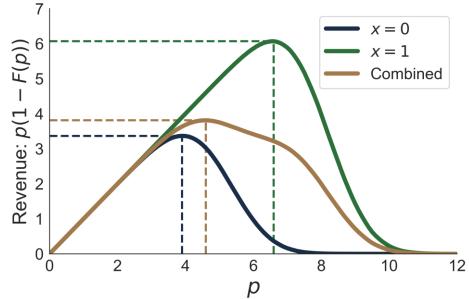
Example

- Suppose we have a binary covariate, $x_i \in \{0, 1\}$. Population evenly split
- Valuation distributions differ
- And then purchase probabilities at each price *p* also differ



Example cont.

- If we don't have any capacity constraints on the item, we can simply find optimal prices independently for the two customer types
- Value of personalized pricing
 - Revenue from single price: 3.81
 - Revenue from separate prices: 4.72
- Things get more complicated if there are capacity constraints (next time)



Questions?

Demand (distribution) estimation

The challenge

- So far, we've talked about calculating optimal prices if we knew the demand distribution F(p), or the conditional demand distributions $F_{p|X}(p \mid X = x)$
- We don't know these distributions! Need to learn them from data
- What does data look like? We never see valuations, just purchase decisions at historical prices p
- Assumption: we see decisions at many prices p

	Location	Income level	Offered price	Purchased
0	Africa	4.40	4.70	False
1	Europe	21.83	0.61	True
2	America	37.60	3.37	True
3	Europe	17.90	1.91	True
4	Africa	9.45	1.57	False
5	Europe	1.45	4.28	False
6	Europe	19.63	3.00	True
7	Europe	15.76	4.44	False
8	Europe	5.87	6.25	False
•	Amorica	20.21	0.51	Тпио

Naïve approach: Empirical Distribution

- Goal: estimate d(p) = 1 F(p) for each p in a "reasonable range" of prices
- Naïve approach:
 - Bin the historical prices offered
 - In each bin, construct estimate $\widehat{d(p)}$ as the fraction of offers in that bin that were accepted

 $\widehat{d(p)} = \frac{\text{\# offers accepted}}{\text{\# offers}}$

• When estimating $F_{p|X}$ ($p \mid X = x$), simply do the same thing but for each set of covariates

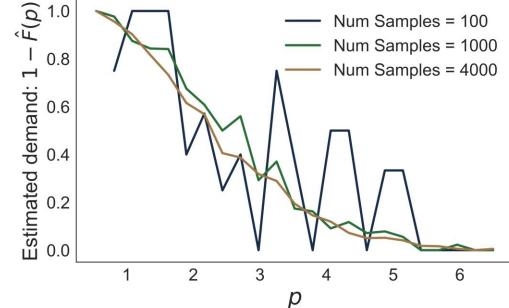
Naïve method pros and cons

Pros:

- Simple to implement
- "Non-parametric" no assumptions
- As # of historical samples $\rightarrow \infty$, converge to truth

Cons:

- Wastes data: only use data for that given price bin and for that given covariate
- Requires many samples



Exactly the same as naïve mean estimation in polling!

Fancier methods: machine learning

- We want to estimate $d(p, x) \stackrel{\text{\tiny def}}{=} F_{p|X}(p \mid X = x)$
- In polling module: we replaced mean estimation with "MRP." More generally, plug in a machine learning model
 - Now, can borrow information across prices and covariates
 - We must make a "parametric" assumption for how prices and covariates relate to purchasing decisions
- One example: Logistic regression
 - Target (Y variable) is purchase decision
 - Covariates are: price offered, user covariates, interactions between price and covariates, or within covariates

Demand estimation comments

- Demand estimation and forecasting is probably the *most important and difficult* challenge in revenue management
- Unlike most machine learning challenges, we need to estimate a function F(p) [or treat price as a covariate]
- We made a *substantial* assumption that almost never holds in practice: that you have historical data at many different prices *p* Requires experimentation!

Today's summary, & complicating factors

Today: We want to sell an item

- No capacity constraints
- No competition from other sellers
- No over-time dynamics
- Allowed to explicitly give different prices to different users
- Only one item

Then: revenue-maximizing price(s) and demand estimation Next time: Relax (some of) these limiting assumptions

Questions?