ORIE 5355: People, Data, & Systems Lecture 2: Common challenges in data collection Nikhil Garg

Questions from last time?

Module overview

- What *is* data? Where does it come from? What does it *represent*?
- Common challenges in data collection Selection biases, censoring, and other challenges
- Polling/surveys as an extended example
 - What goes wrong in measuring opinions (mean estimation)
 - Some techniques that somewhat work
 - US 2016 election polls as a case study
- Other challenges and contexts: online ratings, privacy, etc.

What is data?

A quick primer on measurement theory

What is a quantitative data point?

A measurement is "assignment of numbers to a variable in which we are interested."

- Construct/variable: what are we actually interested in?
- measurement/datum: numerical representation

These are not the same thing, especially with complexities of people!

Examples of constructs and (often flawed) measurements

Construct	Measurement			
How well you understand the course material	A 1-100 grade, or a coarser letter grade			
Your opinion about a movie	1-5 star rating, or a paragraph text review			
Your political views/ideal public policy	Reduced to binary choice in voting			
Race + Ethnicity	"white," "Black," "Asian" "Hispanic" "Other"			
Gender	Often reduced to binary in surveys/forms			

People disagree on how measurements map to constructs

- Ratings in online marketplaces across countries
 In the US, anything but 5 stars means "terrible."
 In other countries, 3 or 4 stars is the norm
 Heterogeneity within a country/culture: some people rate everything a 5 and always tip, others never do
- What do political terms mean? Hakeem Jefferson, "The Curious Case of Black Conservatives: Construct Validity and the 7-point Liberal-Conservative Scale."

Why does this matter?

- You're AirBnB
 - Do you have the same threshold for badges/`high quality' across countries?
 - People travel across countries, how do you standardize their ratings?
 - How do you communicate ratings to people from different cultures?
- You're doing a regression and trying to predict political leaning
 - When someone says they are "for environmental protection," does that mean they support raising taxes on fuel?
 - Do you do something different for Black people who say they're conservative versus white people who do so?
- You collect reports on problems in a city (311). What does it mean when someone reports an "unacceptable" pothole to fix?

What to do about it?

When *collecting* data, you can opt for free form text to give flexibility

- Doesn't constrain people to your pre-determined categories
- Potentially allows people to add more detail to capture the "construct"

This makes *analyzing* the data harder; doesn't fully solve the problem

- Most machine learning methods take in numeric or categorical data
- Even most modern NLP techniques convert words to numbers ("embeddings")
- Doesn't solve the problem of people using the same words to mean different things

=> this is a fundamental issue with quantitative data analysis

Ok, so what *can* you do?

You're going to have to make measurement choices at some point. Best make them consciously than by default.

- What is the data going to be used for? Do you need to create categories if there isn't a downstream prediction task?
- Categories chosen should relate to downstream tasks "Hispanic/Latino" category:
 - To know what languages to support, need to separate "Brazilian"
 - To predict political lean, separate out "Cuban in Florida"
- Some measures are more consistent than others Ask about more "objective" traits such as responsiveness or cleanliness

Parting thoughts about constructs

- Quantitative data science is all about creating general beliefs about discrete categories
 Also known as "stereotyping," and data science inherits all its problems
- Be thoughtful about whether the measurement you have is appropriate for the construct you care about
- Many of the challenges we'll discuss in this class are just the measurement-construct dichotomy in disguise

[You really care about X, but the data you have can only tell you Y]

Questions?

Mean estimation from surveys

The task

- Each person *j* has an opinion, $Y_j \in \{0, 1\}$
- We want to measure $\overline{y} = E[Y_j]$, the population mean opinion on some issue
- Each person also has covariates, x_i^k (e.g., where they live)
- Sometimes, we also care about *conditional* means $E[Y_j | \text{lives in Roosevelt Island}]$

This problem is everywhere

- What fraction will vote for the Democrat in the next election
- What is the average rating of this product?
- Do people want the city to build a foot bridge to Manhattan?
- Are people happy with this new feature I just deployed?

Naïve method

- Get list of people (watched the movie; from phone book)
- Call them, suppose everyone answers and get Y_j from each
- We now have $\{Y_j\}_{j=1}^N$, if called N people
- Simply do, $\hat{y} = \frac{1}{N} \sum_{j} Y_{j}$
- By law of large numbers, if Y_i is independent and identically distributed according to the true population's opinion, then

 $\hat{y} \to \bar{y} \text{ as } \mathbb{N} \to \infty$

What goes wrong

People don't give "true" opinion

Why?

- You're asking about something sensitive
- "social desirability" people like making other people happy
- They're getting paid to answer the survey and just want to finish
- You know they other person is also going to rate you

Of course, then you're (likely) not going to succeed

People gave you \widetilde{Y}_{j} , instead of Y_{j}

 $\hat{y} = \frac{1}{N} \sum_{j} \widetilde{Y}_{j}$ \hat{y} does not converge to \overline{y} , unless errors cancel out

Your sample does not represent your population

- You just posted a poll on Facebook or Twitter, anyone could respond
- You called only landlines, and no one under 50 owns one anymore
- You only asked people to rate a movie after they've seen it
- You can only rate an item if you bought it and didn't return it
- Those with certain opinions are more likely not to answer
 - After bad experiences on online platforms
 - "Shy Trump voters" (?)

=> People who answer the poll are different than your population – "differential non-response"

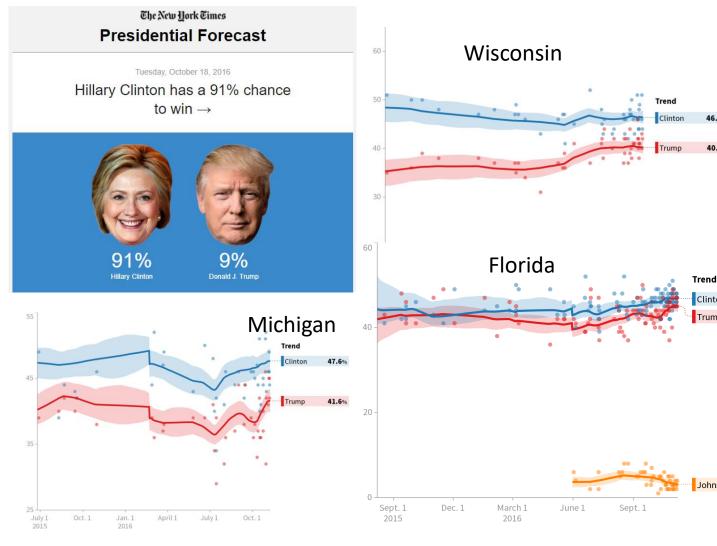
Your sample does not represent your population, in math

- For each person j, let $A_j \in \{0,1\}$ be whether they answered
- You have $Y = \{(A_j, Y_j)\}_{j=1}^N$, if called N people Where $Y_j = \emptyset$ if $A_j = 0$ (they did not answer)
- Again, you do

 $\hat{y} = \frac{1}{|\{j \mid A_j = 1\}|} \sum_{j \in \{j \mid A_j = 1\}} Y_j$ where $\{j \mid A_j = 1\}$ denotes the set of people who answered and so $|\{j \mid A_j = 1\}|$ is the number of people who answered

 \hat{y} does not converge to \overline{y} unless Y_j and A_j are uncorrelated

Case study: Polling in US 2016 presidential election

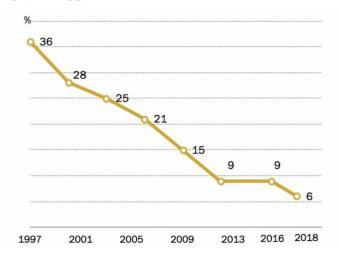

Where the polls were wrong – and right

Trump's margin in state polls taken during campaign's last three weeks vs. his margin in the election results

					ERESTIMATED MP MARGIN	Poll error	OVERESTIM TRUMP MA	ATED RGIN
_				- 30	-20 -10	0 +10 +20 +30	+40 +50	+60
\mathbf{n}	1 (5 e	District of Columbia			O AVERAGE		
	Ir	$ \square $	Hawaii					
U.	Тſ	ノし	California			0000		
<u> </u>			Rhode Island					
			Illinois					
			Nevada			00000		
			Connecticut					
			New Mexico			000		
			Massachusetts					
			Washington					
			Colorado					
			New York					
			New Jersey		(60	C 100 00		
			Delaware		0.0	00 00		
			Texas			OBBB		
5.4%			Arizona		0.000	• • • • • • • • • • • • • • • • • • •		
			Georgia			000		
			Florida		00 0 000	00000		
0.2%			Virginia		00 000	0 000		
			Oregon		• • • •	0 000 0		
			Maryland			0 000 0		
			Vermont		• • • • • • • • • • • • • • • • • • • •			
			Louisiana		• •	B D 0		
			Michigan		(0) (MC)			
			Pennsylvania					
			Montana		• • • • • • • •	00		
			New Hampshire					
			Wisconsin					
			Mississippi		00 000			
1			Alaska North Carolina		• •• ••			
			Ohio					
ton	46.8%		Minnesota					
np	45.0%		lowa					
nμ	43.0%		Indiana					
			Alabama		0.000	00 0		
			Nebraska		000000			
			Maine		0 00 000			
			Kentucky	- 0				
			South Carolina					
			Missouri					
			Arkansas		0 00000	•		
			Wyoming		00000000			
			South Dakota	0	0 00 COM0			
			Kansas	- 00 - 0		0		
			Utah	- 6		0 0		
			Oklahoma	•	0.000			
			North Dakota		0 0 00000			
nson	3.1%		Idaho	0				
			West Virginia	•	0000			
			Tennessee		000000			
					1 and			
			National					

FIVETHIRTYEIGHT

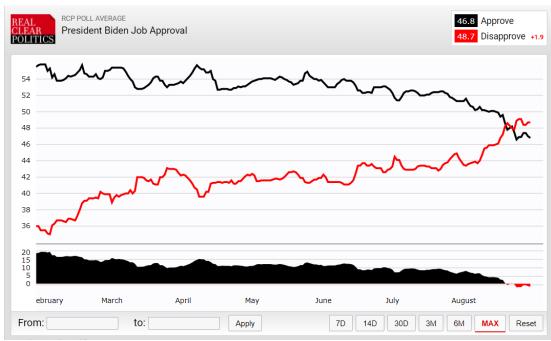
Polls were off (a bit) in the 2016 e



What happened?

- Professional pollsters spend a lot of time on getting opinions right [We'll cover some of their techniques next time]
- But, polling is an increasingly challenging business Basically no one answers a phone poll Modeling opinions/turnout in diverse democracy is hard "social desirability" → "shy Trump voters" (?)
- In 2016, turns out that less educated voters both: Were less likely to answer polls Were more likely to vote Trump

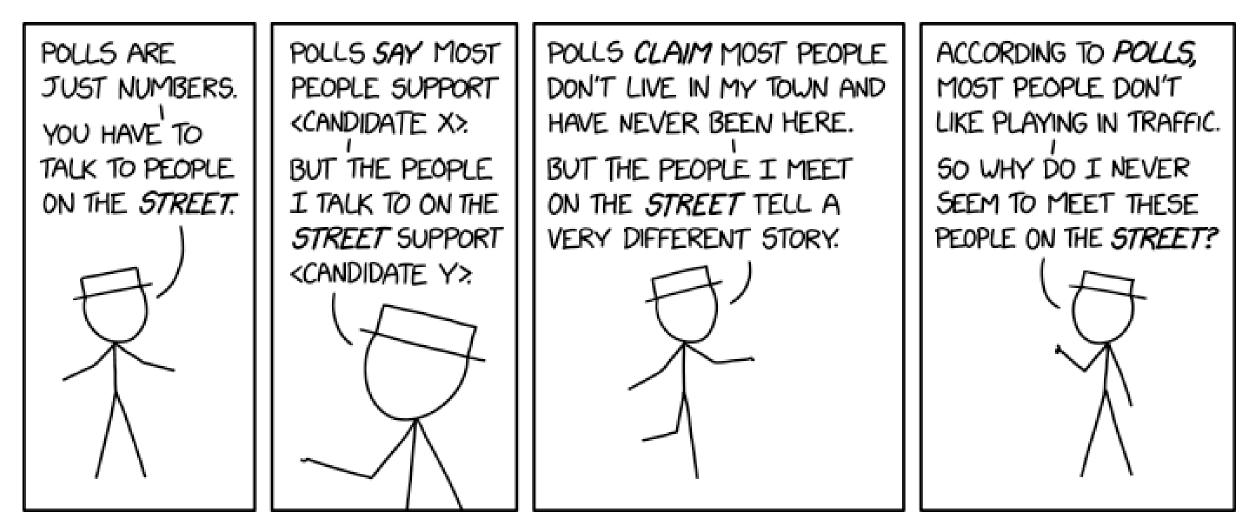
Response rate by year (%)



Note: Response rate is AAPOR RR3. Only landlines sampled 1997-2006. Rates are typical for surveys conducted in each year. Source: Pew Research Center telephone surveys conducted 1997-2018.

EW RESEARCH CENTER

Differential non-response is everything


- Differential non-response shows up everywhere you're gathering opinions
- Your training data for whatever model you train faces the same issue!
- Standard "margin of error" calculations do not take this into account
- Differential non-response *over time* often explains "swings" in polls!

Parting thoughts

Be purposeful! Does your numeric data capture what you want it to?

Be skeptical! Just because a poll was "random" doesn't make it good

Other pollsters complain about declining response rates, but our poll showed that 96% of respondents would be 'somewhat likely' or 'very likely' to agree to answer a series of questions for a survey.

Announcements

- Homework 1 being posted on Friday
- TA office hours start next week Friday On zoom (access via canvas)
- My office hours today, 4:30p, outside café On zoom (access via canvas)

Questions?