ORIE 5355: People, Data, & Systems

Lecture 13: Experimentation complications: peeking and interference

Nikhil Garg

Course webpage: https://orie5355.github.io/Fall 2021/

Announcements

- Today 11/1 guest lecture virtually: Hannah Li on marketplace experimentation
 - 6:15pm 7:30 pm on Zoom
 - Will be recorded; required to watch it (will be on quiz)
 - Live attendance not required but is appreciated
- HW4 released; due next week
- Quiz 4 next week
- Project details released in next week
 - Project partner form on EdStem

THE INVENTION OF CLINICAL TRIALS

xkcd: Clinical Trials

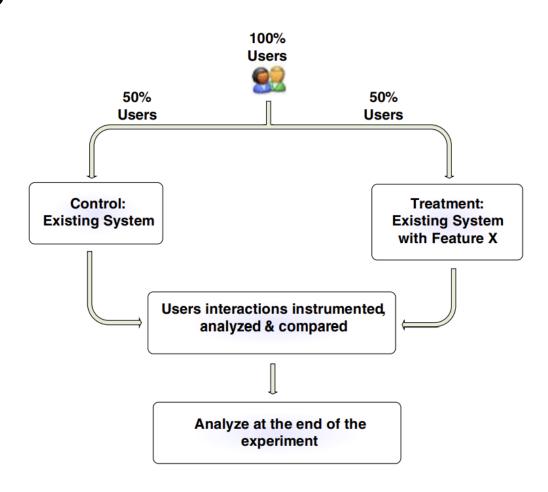
Peeking: a common mistake in running A/B tests in online marketplaces

Basics of basic A/B testing

- Have an idea for a system change
- Give X% of your users the changed system, everyone else the old system

Do this until you have N samples

- Decide the metric you care about
- Check if your system improved the metric
- Launch your product if good things happened



[Source: Controlled experiments on the web: survey and practical guide]

Experiment Dashboards

In modern internet experiments, it's easy to see experimental results while they are happening

Sample results dashboard:

erformance Summary					
UNIQUE VISITORS	Variations	Visitors	Views	example click	pic click
79,797	Original	19,942 25.0%	10% (±0.70)	10% (±0.70)	10% (±0.70)
DAYS RUNNING 131 Started: April 9, 2014 How long should I run my test?	Variation #1	19,899 25.0%	+20.0% 12% (±0.70)	+20.0% 12% (±0.70)	▼ -15.0% 7% (±0.70)
	Variation #2	19,989 25.1%	+10.0%	+10.0% 11% (±0.70)	▼ -12.0% 8% (±0.70)
	Variation #3	19,967 24.9%	-10.0% 9% (±0.70)	▼ -10.0% 9% (±0.70)	-10.0% 9% (±0.70)
					← -

[Image credit: Ramesh Johari (Stanford; also Optimizely at time of presentation)]

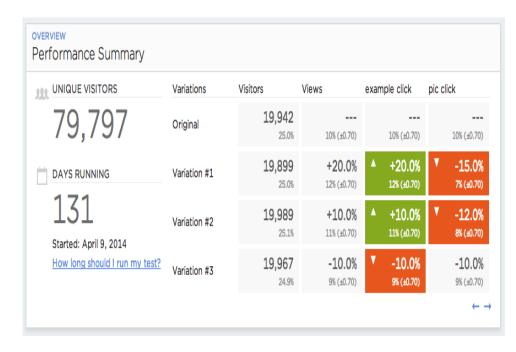
Peeking

In modern online setting, the approach I described above is wasteful

So you continuously monitor (stare at) the results dashboard.

You rely on the dashboard to tell you when your results are significant.

- As soon as results are significant, you end the test and declare victory
- This is called adaptive sample size testing:
 - You adjust the test length in real-time, based on the data coming in.
 - If difference $Y_1 Y_0$ is huge, end the experiment early



[Slide credit: Ramesh Johari (Stanford; also Optimizely at time of presentation)]

Effect of peeking

- Suppose 100 different individuals run A/A tests (same arm is treatment and control, so you know that $Y_1 Y_0 = 0$)
- Each continuously monitors the dashboard, and waits for a significant result, i.e., p-value < 5% (up to a maximum of 10,000 visitors).
- How many find a significant result and stop early? Remember, $\alpha=0.05$ means that if there is no true difference $(Y_1-Y_0=0)$, then 5% of the time you will falsely declare that $\widehat{Y}_1-\widehat{Y}_0\neq 0$ in a statistically significant way (false positive)
- Answer: Over HALF! find a significant result if they peek
- In A/B testing, "peeking" can dramatically inflate false positives.

[Slide credit: Ramesh Johari (Stanford; also Optimizely at time of presentation)]

What went wrong?

A sample run of an A/A test (graph is of p-values over time)



If you wait long enough, there is a high chance of an eventually inconclusive result looking "significant" along the way!

[Slide credit: Ramesh Johari (Stanford; also Optimizely at time of presentation)]

Peeking: what to do about it

You have two options

- Don't peek: set a sample size N before the experiment starts, and don't end early no matter how large the effect is
 - Easy to do the statistics; no danger of inflating false positives
 - Could be wasteful: what if the effect is clearly huge?

 Even medical trials have a procedure to end early if a drug is clearly fantastic
- Peek, but do fancy statistics to make sure your p-values are valid
 - This is the approach Optimizely implemented on their dashboards
 - If you're at a big company with an established experimental culture, they (hopefully) have a dashboard that does this

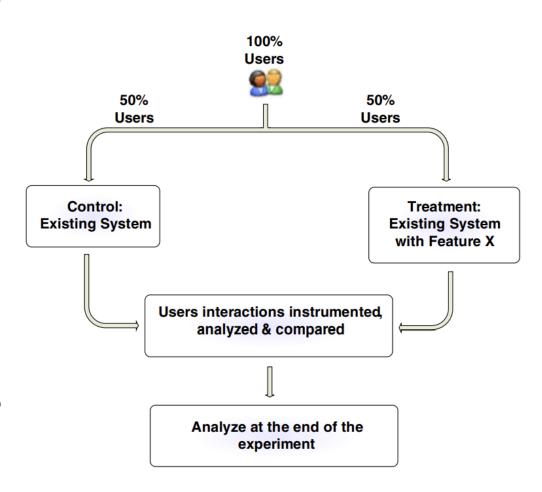
Interference in experimentation

Basics of basic A/B testing

- Have an idea for a system change
- Give X% of your users the changed system, everyone else the old system

Independently assign each user to treatment or control

- Decide the *metric* you care about
- Check if your system improved the metric
- Launch your product if good things happened



[Source: Controlled experiments on the web: survey and practical guide]

Interference motivation

Experimentation goal: ultimately, we want to measure – "what will happen
if I launch this product for everyone, compared to if everyone gets the
control"

"Global treatment effect"

- With A/B testing so far, we give some people the treatment and some people the control, and then calculate the treatment effect $Y_1 Y_0$
- We implicitly assumed: if we give some people the treatment, individually that is equivalent to giving everyone the treatment:

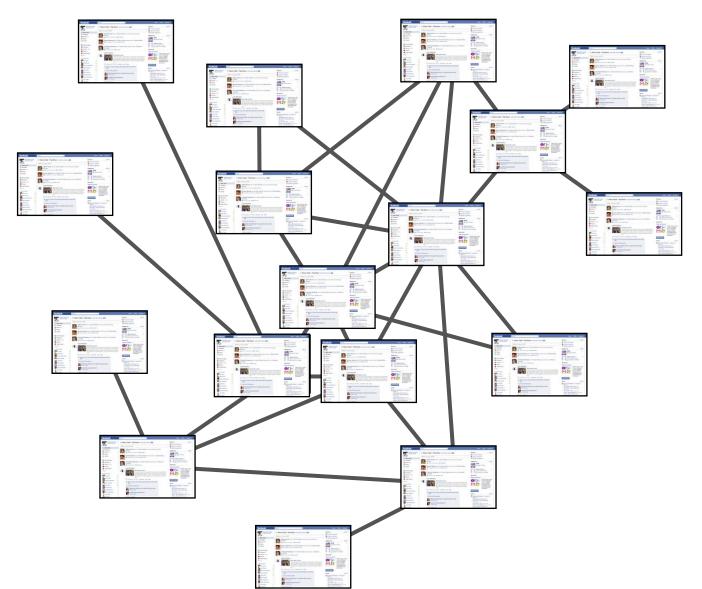
Effect of giving someone a coupon doesn't depend on if their friend got a coupon

- This assumption is often violated in people-centric systems!
 (Social) network effects, capacity constraints
- Different units (people) interfere with one another

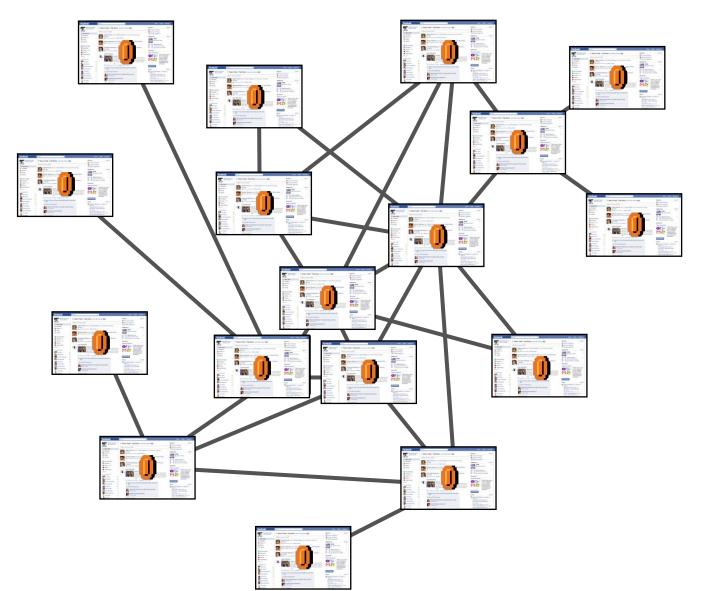
Interference in experimentation

A/B testing in (social) networks

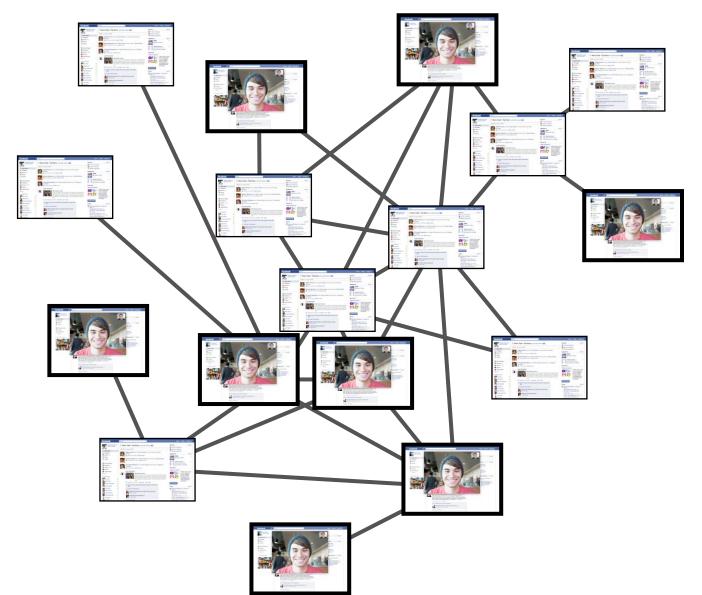
A/B testing under network effects



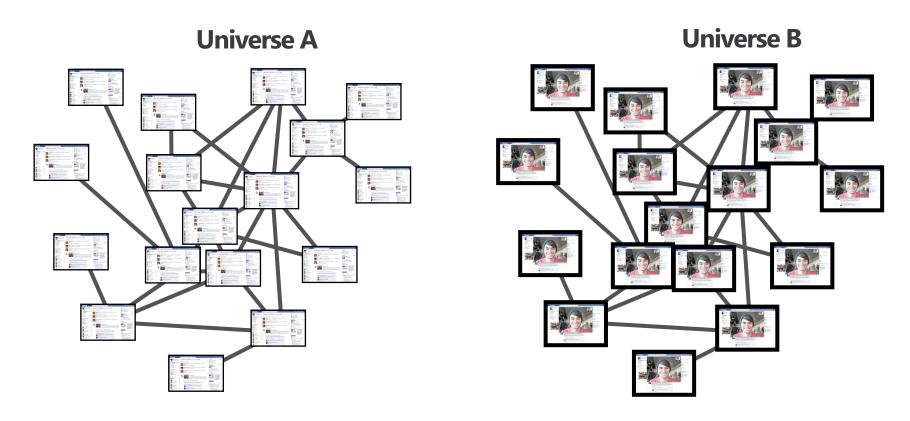
A/B testing under network effects



A/B testing under network effects



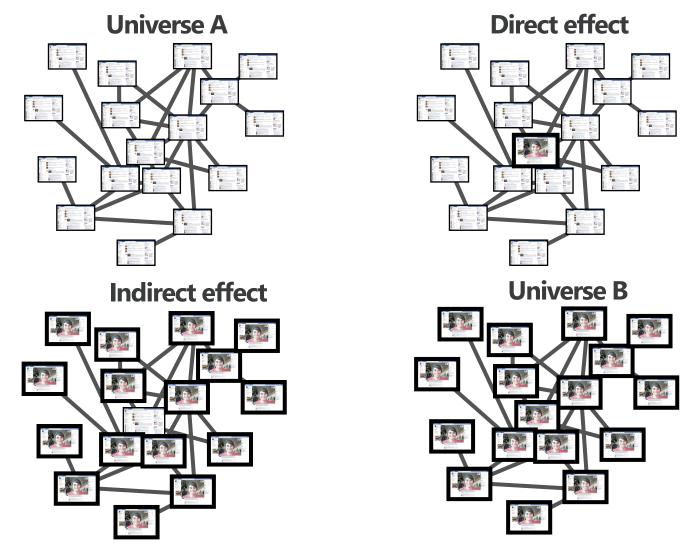
Causal inference & network effects



Fundamental problem: want to compare (average treatment effect, ATE), but can't observe network in both states at once.

- J Ugander, B Karrer, L Backstrom, J Kleinberg (2013) "Graph Cluster Randomization: Network Exposure to Multiple Universes," KDD.
- D Eckles, B Karrer, J Ugander (2014) "Design and analysis of experiments in networks: Reducing bias from interference," arXiv.
- S Athey, D Eckles, G Imbens (2015) "Exact P-values for Network Interference," arXiv.

Direct vs. indirect effects



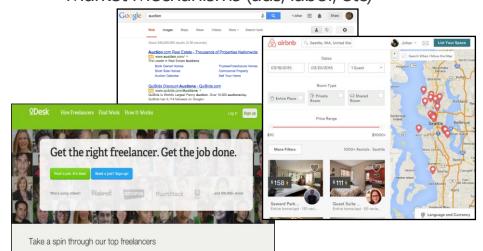
- P Aronow, C Samii (2013) "Estimating average causal effects under interference between units," arXiv.
- C Manski (2013) "Identification of treatment response with social interactions," The Econometrics Journal.

Experiments with interference

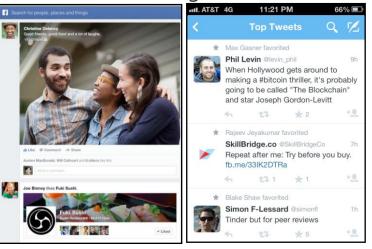
Chat/communication services

Social product design

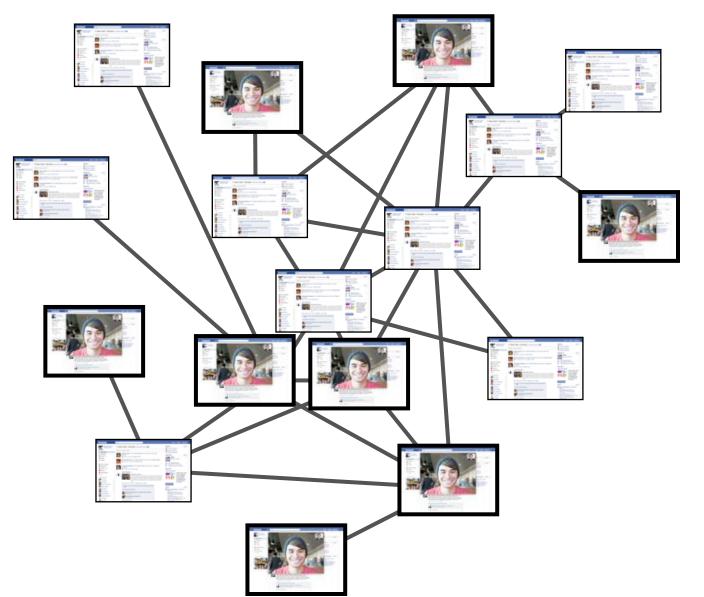
Market Mechanisms (ads, labor, etc)



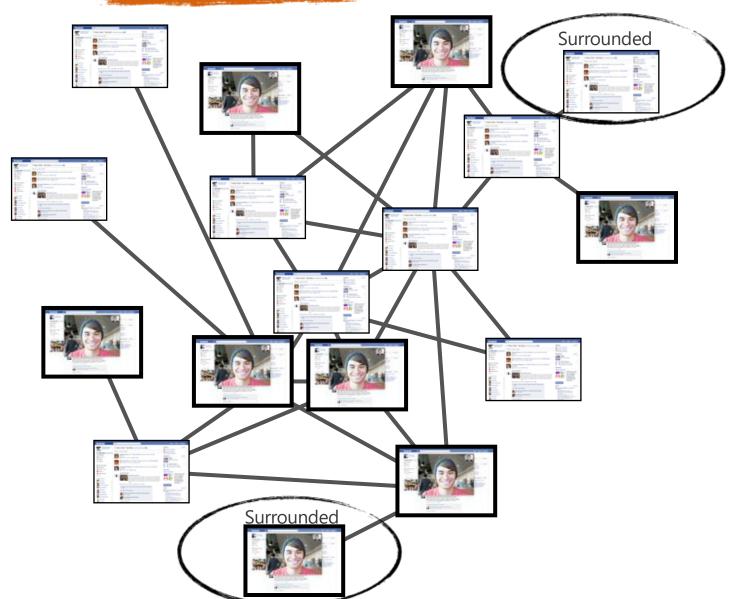
Content ranking models



Design & Analysis



Design & Analysis

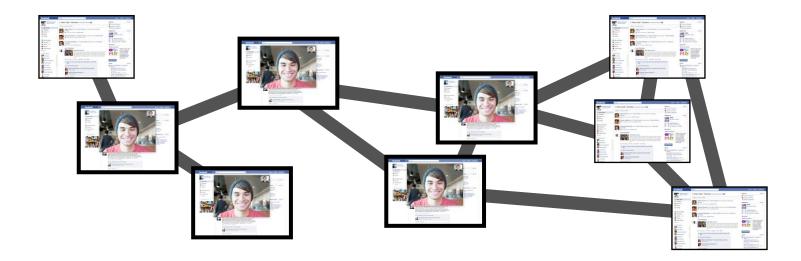


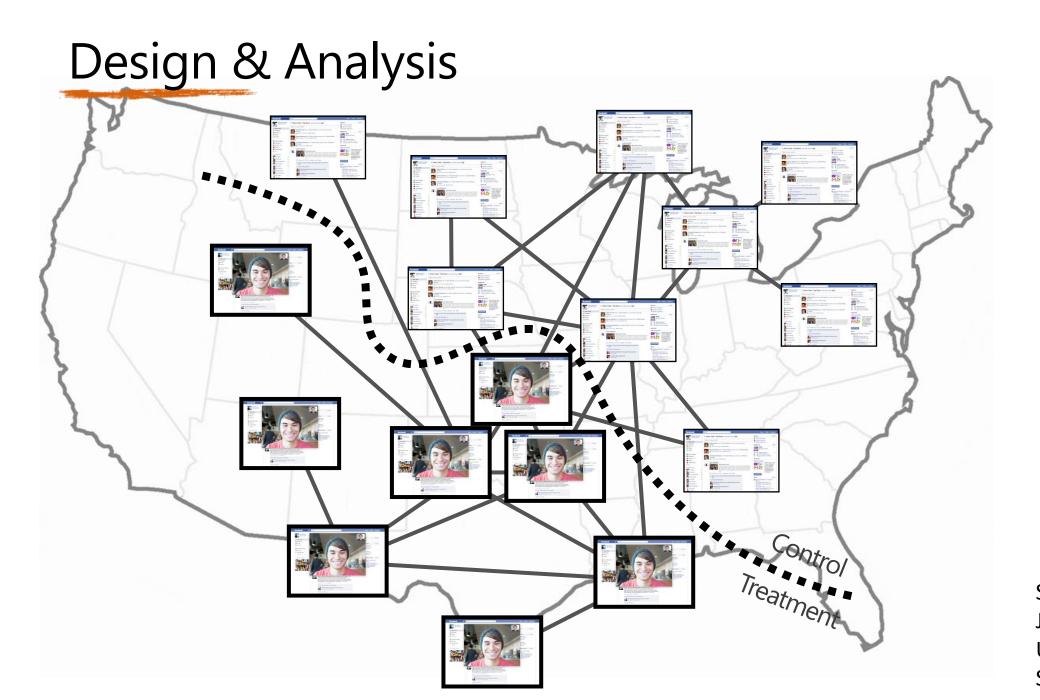
Analysis: "network exposure"

• Two treatment conditions: treatment/control.

The state of the s

- When are people network exposed to their treatment condition?
- Neighborhood exposure to treatment/control:
 - Full neighborhood exposure: you and all neighbors
 - Fractional neighborhood exposure: you and ≥q% neighbors
- Many more notions are plausible

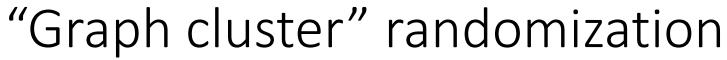




New Zealand assignment

Image credit:
Johan
Ugander,
Stanford

Idea: Pick a region of the graph that is densely connected with each other, but less connected with other parts of the graph. Put treatment in region, control everywhere else



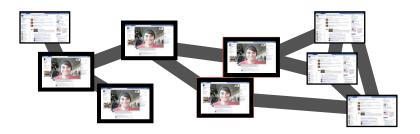
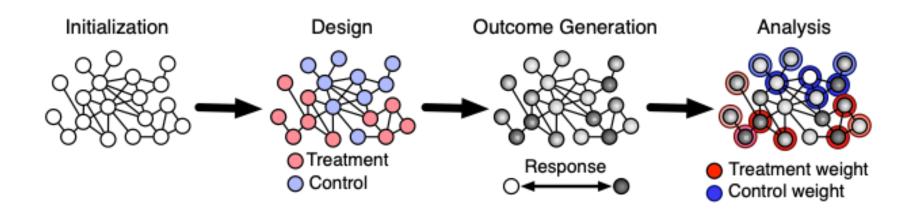


Image credit: Johan Ugander, Stanford

Idea: Algorithmically find many such regions, and then assign half of them treatment, and the other half control

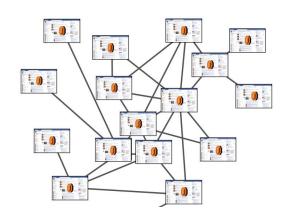
Network Experimentation summary



- Initialization: An empirical graph or graph model
- Design: Graph cluster randomization
- Outcome generation: Observe behavior (or observe model)
- Analysis: Discerning effective treatment

General lesson: "unit" of randomization

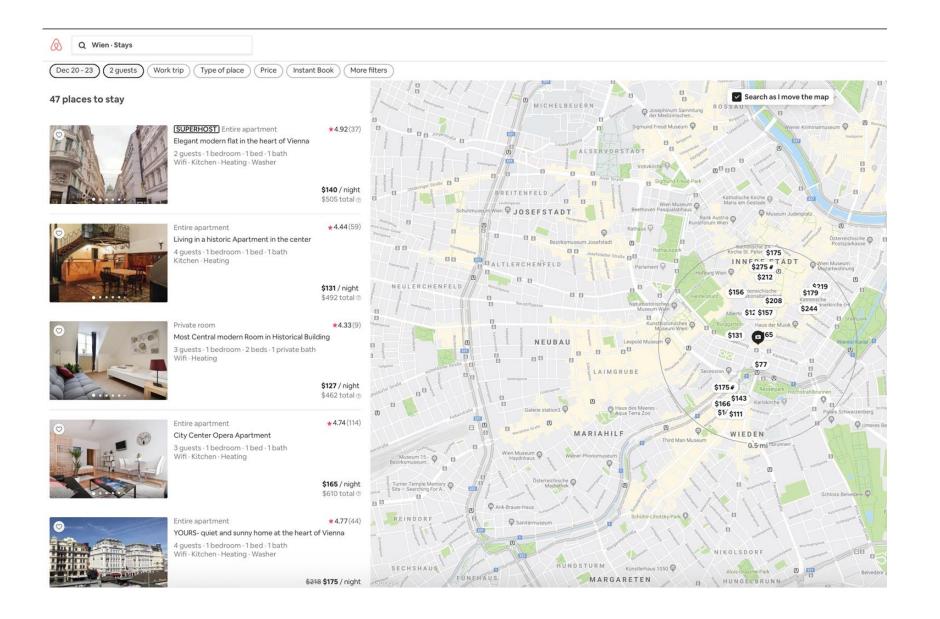
- If you randomize at the "individual" level (each individual is its own "unit"), then treatment and control units can interfere with each other
- Solution is often to change the *unit of* randomization: randomize "clusters" instead of individuals
 - Hope: clusters are close to independent
 - If independent, experiment is *unbiased*
- Downside: Experiment "variance" goes down with sample size of experiment
 - Before: Sample size is *millions* (of users)
 - Now: Sample size is hundreds (of clusters)
- Same bias-variance trade-off we've seen before!



Interference in marketplaces

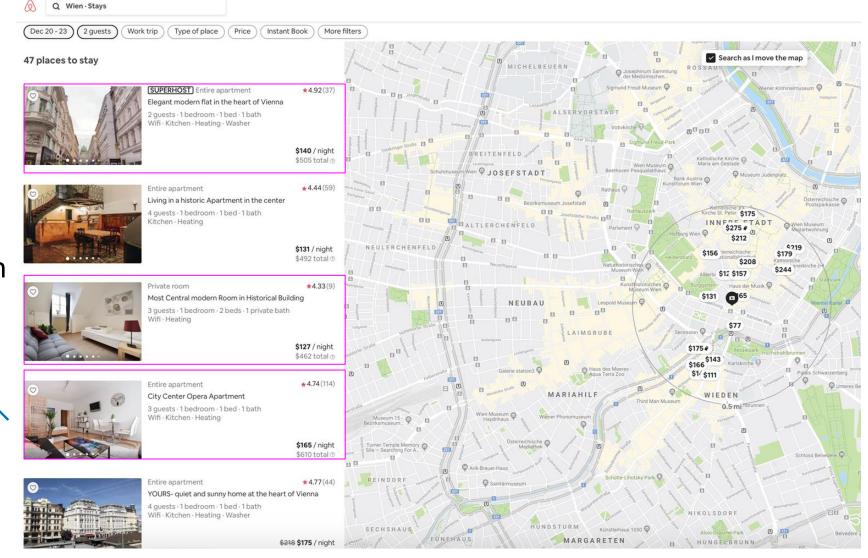
- Interference between treatment and control also arises in marketplaces
- In social networks: Interference because use case is social me getting video messaging doesn't matter if none of my friends get it
- In markets, interference rises from *competition and capacity constraints*
- If I make half the products cheaper, customers will *increase* their purchases of the cheaper items...why?
 - *Decrease* their purchases of the more expensive items (cannibalization)
 - Go from not purchasing at all, to buying the now cheaper item (new customer)
- Not a good representation of what would happen if I make all my products cheaper
 - Cannibalization effect would not occur; only attraction of new customers
- Tonight and next time: experimentation in marketplaces under interference

Example: price change experiment on Airbnb



Slide credit: Dave Holtz, UC Berkeley

Example: price change experiment on Airbnb

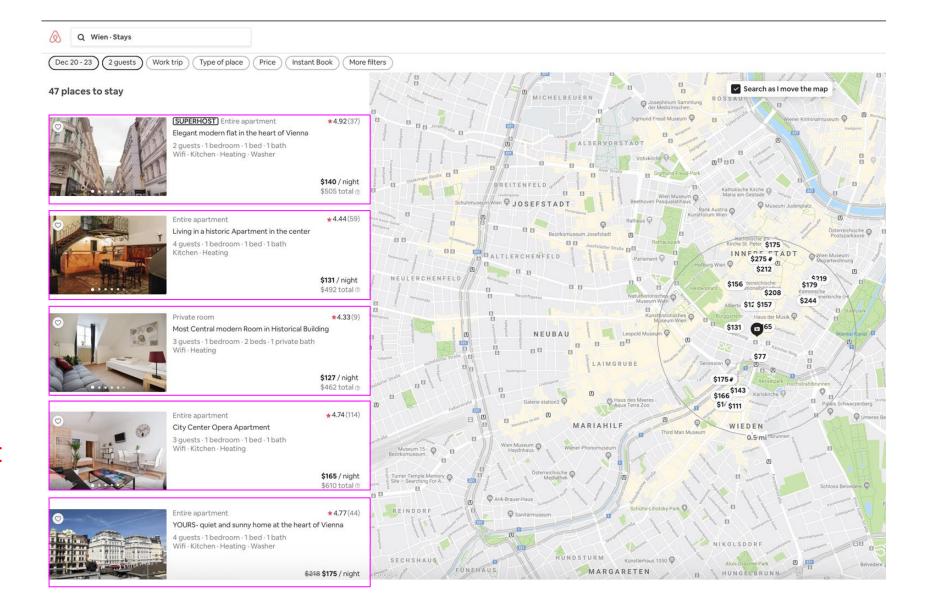


If lower fees on half of the listings, bookings for those listings \\ 3\% \end{align*}

Slide credit: Dave Holtz, UC Berkeley

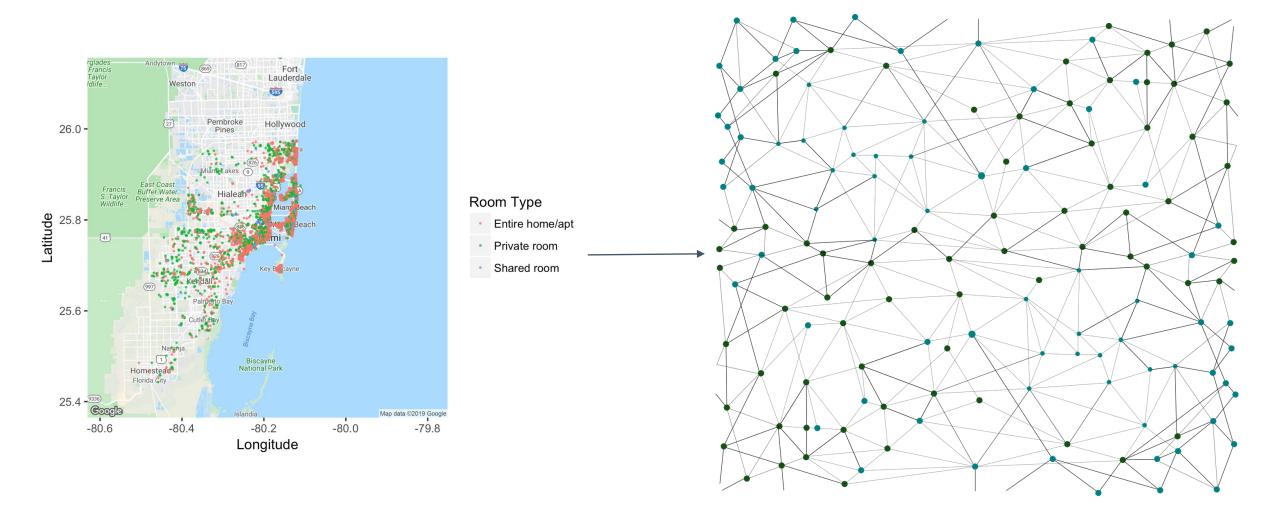
Example: price change experiment on Airbnb

If lower fees on all the listings, Overall bookings flat

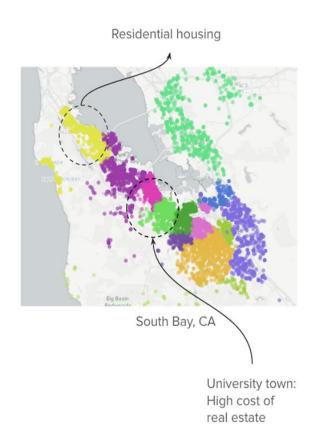


Slide credit: Dave Holtz, UC Berkeley

Approach 1: transform the marketplace into a network



Network experiment designs + analysis techniques



- Now, listings are connected if they tend to be substitutes
- Much more complicated to learn the network structure
 - Once have network structure, use cluster randomization techniques from above

Announcements

- Today 11/1 guest lecture virtually: Hannah Li on marketplace experimentation
 - 6:15pm 7:30pm on Zoom
 - Will be recorded; required to watch it (will be on quiz)
 - Live attendance not required but is appreciated
- HW4 released; due next week
- Quiz 4 next week
- Project details released in next week
 - Project partner form on EdStem